Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hydrochlorothiazide dimethyl sulfoxide solvate

Andrea Johnston,^a Alastair J. Florence^{a*} and Alan R. Kennedy^b

^aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: alastair.florence@strath.ac.uk

Key indicators

Single-crystal X-ray study $T=123~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.040 wR factor = 0.110 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hydrochlorothiazide forms a 1:1 solvate with dimethyl sulfoxide, $C_7H_8ClN_3O_4S_2\cdot C_2H_6OS$. The crystal structure contains a hydrogen-bonding network comprising three N— $H\cdots O$ contacts.

Received 23 March 2006 Accepted 6 May 2006

Comment

Hydrochlorothiazide (HCT) is a thiazide diuretic which is known to crystallize in at least two non-solvated forms; form I (Dupont & Dideberg, 1972) and form II (Florence *et al.*, 2005). The dimethyl sulfoxide (DMSO) solvate, (I), was produced during an automated parallel crystallization polymorph search on HCT. The sample was identified as a new form using multisample X-ray powder diffraction analysis of all recrystallized samples (Florence *et al.*, 2003). Subsequent manual recrystallization by slow evaporation of a saturated DMSO solution at 278 K yielded samples of (I) suitable for single-crystal X-ray analysis (Fig. 1).

In (I), the six-membered ring N1-S1-C3-C2-N2-C1 in HCT displays a puckered conformation, atom N1 having a

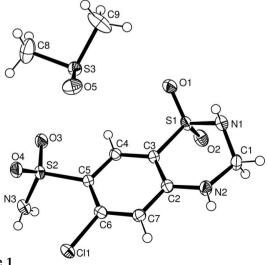
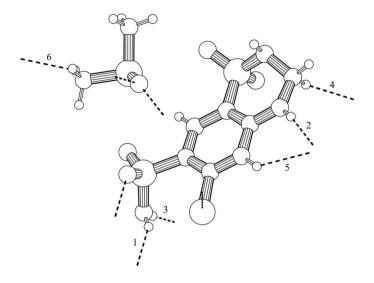



Figure 1
Plot of the asymmetric-unit contents with the atom-numbering scheme.
Displacement ellipsoids are drawn at the 50% probability level.

© 2006 International Union of Crystallography All rights reserved

Figure 2

Intermolecular interactions in (I). Dashed lines indicate hydrogen bonds and unique contacts are labelled as follows: $1 = N3 \cdots O4$, 3.004 (3)Å, O4 in the molecule at (-x, 2-y, 2-z); $2 = N2 \cdots O5$, 2.806 (3)Å, O5 in the molecule at (1-x, 1-y, 2-z); $3 = N3 \cdots O5$, 2.776 (3)Å; O5 in the molecule at (-1+x, y, z); $4 = C1 \cdots O4$, 3.347 (3)Å, O4 in the molecule at (x, -1+y, z); $5 = C7 \cdots O5$, 3.289 (3)Å, O5 in the molecule at (1-x, 1-y, 2-z); (1-x, 1-y, 2-z); (1-x, 1-z)). Contacts calculated and illustrated using (1-x, 1-z)0. Contacts calculated and illustrated using (1-x, 1-z)0. Spek, (1-x, 1-z)0. Spek, (1-x, 1-z)1.

Figure 3 The $R_3^2(8)$ hydrogen-bonded motif in the crystal structure of (I).

deviation of 0.622 (2) Å from the least-squares plane through atoms C2–C7. The sulfonamide side chain adopts an N3–S2–C5–C6 torsion angle of -62.0 (2)°, such that O3 eclipses H4, and atoms O4 and N3 are staggered with respect to Cl1.

The crystal structure is stabilized by three N-H···O hydrogen bonds interconnecting (a) HCT molecules (Fig. 2, contact 1) and forming an $R_2^2(8)$ (Etter, 1990) centrosymmetric dimer (Fig. 3), and (b) HCT and two DMSO molecules (Fig. 2, contacts 2 and 3).

The aromatic ring formed by atoms C2–C7 is involved in two offset face-to-face π – π interactions between nearest-neighbour HCT molecules with centroid–centroid distances/ perpendicular distances between the corresponding planes equal to 4.354 (2)/3.58 Å (centroid at -x, 1-y, 2-z) and 4.466 (2)/3.57 Å (centroid at 1-x, 1-y, 2-z). The HCT aromatic rings form a stacked arrangement in the direction of the a axis. The structure also contains three C–H···O contacts between HCT and HCT (Fig.2, contact 4) and between HCT and DMSO (contacts 5 and 6).

Experimental

A single-crystal sample of the title compound was recrystallized by slow evaporation of a dimethyl sulfoxide solution at 278 K.

Crystal data

$C_7H_8CIN_3O_4S_2\cdot C_2H_6OS$	$V = 749.23 (7) \text{ A}^3$
$M_r = 375.86$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.666 \text{ Mg m}^{-3}$
a = 7.5068 (4) Å	Mo $K\alpha$ radiation
b = 9.8272 (5) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 10.7311 (6) Å	T = 123 (2) K
$\alpha = 85.639 \ (3)^{\circ}$	Cut fragment, colourless
$\beta = 73.896 \ (3)^{\circ}$	$0.28 \times 0.28 \times 0.10 \text{ mm}$
$\nu = 80.246 (3)^{\circ}$	

Data collection

3267 independent reflections
2669 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.055$
$\theta_{\text{max}} = 27.2^{\circ}$

Refinement

refinement

J	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0592P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.534P]
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
3267 reflections	$\Delta \rho_{\text{max}} = 0.47 \text{ e Å}^{-3}$
208 parameters	$\Delta \rho_{\min} = -0.48 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N3 - H4N \cdot \cdot \cdot O4^{i} \\ N2 - H2N \cdot \cdot \cdot O5^{ii} \\ N3 - H3N \cdot \cdot \cdot O5^{iii} \end{array} $	0.80 (3)	2.27 (3)	3.004 (3)	153 (3)
	0.81 (3)	2.02 (3)	2.806 (3)	164 (3)
	0.83 (3)	1.95 (3)	2.776 (3)	172 (3)
$C1-H1A\cdots O4^{iv}$	0.99	2.46	3.347 (3)	149
$C7-H7\cdots O5^{ii}$	0.95	2.56	3.289 (3)	134
$C8-H8B\cdots O3^{v}$	0.98	2.53	3.228 (4)	128

Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1.

H atoms bonded to N atoms were found in difference maps and refined isotropically, but all other H atoms were constrained to idealized geometry using a riding model; $U_{\rm iso}({\rm H})$ = 1.2 $U_{\rm eq}({\rm C})$ and C—H = 0.95 (CH group) or 0.99 Å (CH₂ groups).

Data collection: *COLLECT* (Hooft, 1988) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

We thank the Basic Technology programme of the UK Research Councils for funding this work under the project

organic papers

Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).

References

Dupont, L. & Dideberg, O. (1972). *Acta Cryst.* B28, 2340–2347. Etter, M. C. (1990). *Acc. Chem. Res.* 23, 120–126.

Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). *J. Pharm. Sci.* **92**, 1930–1938.

Florence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmundsen, S. & Mullen, A. B. (2005). *Acta Cryst.* E**61**, o2798–o2800

Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.